神经再生研究中,近红外二区荧光寿命成像系统成为追踪轴突再生的“导航仪”。用探针标记损伤后的脊髓轴突,系统可在大鼠模型中观察到轴突再生前沿的荧光寿命信号比成熟轴突长1.2倍,这种差异与再生轴突的髓鞘化程...
光声-荧光双模态:结构与功能的协同解析近红外二区显微成像系统创新性集成光声与荧光双模态。光声模块通过1550nm激光激发血红蛋白,以50μm分辨率重建肿块血管网络,同步量化血氧分压(pO2)分布;荧光...
稀土探针在海洋酸化监测中的应用,为珊瑚礁保护提供了量化工具。探针表面修饰对H⁺敏感的配体,其近红外二区荧光寿命(如Eu³⁺的613nm发射寿命为0.6ms)与海水pH值呈线性相关(pH 7.8-8.2...
双模态光谱分析:骨骼成分与分子探针的同步检测系统的X射线荧光光谱(XRF)功能可分析骨矿物质成分(如Ca/P比),同时近红外荧光通道检测探针信号,在骨矿化障碍疾病中实现“成分-分子”联合分析。在佝偻病...
该系统在寄生虫-宿主互作研究中展现出应用价值。在日本血吸虫受染小鼠模型中,系统通过检测肝组织内虫卵肉芽肿的探针荧光寿命,可量化宿主的免疫病理反应——受染后第6周,肉芽肿的荧光寿命比正常肝组织缩短35%...
环境污染物暴露研究中,近红外二区荧光寿命成像系统提供了个体水平的毒理证据。在斑马鱼胚胎暴露实验中,系统通过检测肝脏细胞内的谷胱甘肽探针荧光寿命,可量化重金属镉的毒性效应——0.1 mg/L镉暴露会使胚...
淋巴系统成像,免疫应答通路解析针对淋巴系统研究,系统通过近红外荧光探针标记淋巴管壁蛋白,清晰显示淋巴结与淋巴管的解剖结构。在疫苗研发中,追踪抗原递呈细胞从注射部位到引流淋巴结的迁移路径,评估疫苗诱导的...
全光谱小动物活体成像系统在细胞治疗产品质量控制方面发挥重要作用。标记细胞治疗产品中的细胞,将其输注到动物体内后,通过成像系统观察细胞在体内的存活、分布和功能发挥情况。在研究干细胞治疗、免疫细胞治疗...
稀土探针在光伏材料缺陷诊断中的应用,推动了太阳能电池效率的突破。将稀土探针(如Er³⁺掺杂钙钛矿)作为缺陷敏化剂,其近红外二区荧光寿命(1535nm发射寿命为3.8μs)对钙钛矿晶界缺陷极为敏感——当...
深海生态研究中,稀土探针的高压稳定性展现出独特价值。在200atm高压(相当于2000米水深)环境下,稀土探针的荧光寿命波动不足3%,而传统量子点的信号衰减超过50%。将稀土探针标记的深海热泉微生物投...
药物靶向递送验证全光谱小动物活体成像系统可用于验证药物的靶向递送效果。将药物或药物载体进行荧光标记,注射到动物体内后,通过成像系统观察药物在体内的分布情况,尤其是在目标组织或病变部位的富集程度。在肿瘤...
极地生态研究中,稀土探针的低温稳定性解决了传统荧光标记的难题。在-80℃的南极极端环境下,稀土探针的荧光寿命(如Dy³⁺的800nm发射寿命为1.8ns)波动不足2%,而有机染料在此温度下几乎无荧光发...
燃气轮机热障涂层监测中,稀土探针发挥着“早期预警”作用。将稀土探针掺杂到陶瓷涂层(如Y₂O₃-ZrO₂)中,其近红外二区荧光寿命(如Nd³⁺的1064nm发射寿命为50μs)与涂层温度及老化程度密切相...
微流控芯片与稀土探针的结合,推动了循环肿瘤细胞(CTC)的高效捕获。将稀土探针修饰的*细胞特异性抗体集成于微流控通道内壁,其近红外二区荧光寿命(如Ho³⁺的2.05μm发射寿命为2ms)可实时指示CT...
光声断层成像:深部肿块的三维血管建模系统的光声断层成像(PAT)模块以500nm空间分辨率重建肿块的三维血管网络,在10mm深度内可识别直径20μm的血管分支。在抗血管生成药物实验中,PAT可量化肿块...
近红外二区荧光寿命成像系统在土壤动物生态研究中开辟了新领域。通过标记蚯蚓体表的共生微生物,系统可穿透土壤(深度达10cm),实时观察蚯蚓活动对土壤微生物群落的影响。实验发现,蚯蚓肠道内的微生物荧光寿命...
近红外二区荧光寿命成像系统的出现,为生物医学成像带来了一场革新。与传统成像技术相比,它在多个方面展现出优越的优势。在穿透深度上,传统的可见光和近红外一区成像技术,由于受到生物组织的强烈吸收和散射,...
近红外二区,深部组织穿透近红外二区(1000-1700nm)成像突破组织穿透限制,生物组织光散射与自发荧光明显降低,可实现5-10cm深度信号采集。肝脏肿块模型中,1550nm波长荧光探针清晰显示肝叶...
全光谱小动物活体成像系统的相机具备低暗电流和高量子效率的特性。系统可对CCD相机和InGaAs相机进行低温制冷,极大地减少了暗电流的产生。暗电流是指在没有光照的情况下,相机传感器产生的电流信号,它会增...
双模态成像的考古学应用:古生物骨骼的非破坏性研究针对考古骨骼样本,系统通过低剂量X射线(<0.01mGy)解析化石骨微结构(如哈弗斯系统形态),荧光光谱分析(1000-1700nm)检测有机残留物(如...
双模态影像的科普可视化:加速科研成果转化系统生成的3D融合影像(X射线骨结构透明化+荧光分子标记伪彩)可直观展示骨骼疾病的发生机制,如骨转移*的“溶骨-成骨”混合病灶与肿瘤细胞浸润路径。这种可视化素材...
淋巴系统成像:免疫应答的关键通路解析系统利用近红外二区荧光探针(1100nm)标记淋巴管内皮细胞,清晰显示淋巴结与淋巴管的解剖结构。在疫苗接种研究中,可追踪抗原递呈细胞从注射部位到引流淋巴结的迁移路径...
双模态光谱分析:骨骼成分与分子探针的同步检测系统的X射线荧光光谱(XRF)功能可分析骨矿物质成分(如Ca/P比),同时近红外荧光通道检测探针信号,在骨矿化障碍疾病中实现“成分-分子”联合分析。在佝偻病...
微流控芯片与稀土探针的结合,推动了循环肿瘤细胞(CTC)的高效捕获。将稀土探针修饰的*细胞特异性抗体集成于微流控通道内壁,其近红外二区荧光寿命(如Ho³⁺的2.05μm发射寿命为2ms)可实时指示CT...
身体部位纤维化成像,早期病变检测系统利用纤维化特异性荧光探针(如靶向Ⅰ型胶原的肽探针),实现肝、肾、肺等身体部位纤维化的早期检测。在肝纤维化模型中,探针与纤维沉积区特异性结合,通过近红外荧光成像可在纤...
近红外二区荧光寿命成像系统,巧妙避开了这些困境。其利用1000-1700nm的近红外二区波段光,生物***组织对这个波段光的吸收和散射明显降低,从而具备更高的组织穿透深度,能够深入生物体内部进行探测。...
纺织防护领域,稀土探针赋予纤维“智能监测”功能。将稀土探针纺入防护服纤维中,其近红外二区荧光寿命(如Pr³⁺的1090nm发射寿命为5.3μs)会随接触的重金属离子浓度变化而改变——当皮肤接触Pb²⁺...
宽光谱成像对于生命科学研究意义非凡。在400 - 1700nm的宽光谱范围内,不同波长的光能够穿透生物组织的深度不同,所携带的生物信息也各有差异。通过全光谱成像,研究人员可以综合分析不同波长下的成像结...
手术导航与术后评估:全流程诊疗支持双模态系统贯穿骨肿块诊疗全周期:术前通过X射线-荧光成像制定切除范围(如肿块边界外5mm),术中实时导航确保切缘阴性,术后通过双模态复查评估骨愈合(X射线骨痂密度)与...
环境污染物暴露研究中,近红外二区荧光寿命成像系统提供了个体水平的毒理证据。在斑马鱼胚胎暴露实验中,系统通过检测肝脏细胞内的谷胱甘肽探针荧光寿命,可量化重金属镉的毒性效应——0.1 mg/L镉暴露会使胚...