勾股定理,是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法较多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的**重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,**早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。欢迎咨询!合理运用数学教学教具可以提高教学效率。辽宁数学教学教具配置方案
体积,几何学专业术语。当物体占据的空间是三维空间时,所占空间的大小叫做该物体的体积。体积的国际单位制是立方米。一维空间物件(如线)及二维空间物件(如正方形)都是零体积的。当物体占据的空间是三维空间时,所占空间的大小叫做该物体的体积。示例1:木箱的体积为3立方米;2:电解水时放出二体积的氢与一体积的氧。常用单位立方米、立方分米、立方厘米、立方毫米棱长是1毫米的正方体,体积是1立方毫米棱长是1厘米的正方体,体积是1立方厘米棱长是1分米的正方体,体积是1立方分米棱长是1米的正方体,体积是1立方米。欢迎咨询!辽宁九年制数学教学教具学生亲自使用数学教学教具,加深对数学原理的理解。
图形计算公式1、正方形(C:周长S:面积a:边长)周长=边长×4C=4a面积=边长×边长S=a×a2、正方体(V:体积a:棱长)表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3、长方形(C:周长S:面积a:边长)周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4、长方体(V:体积s:面积a:长b:宽c:高)(1)表面积(长×宽+长×高+宽×高)×2S=2(ab+bc+ca)(2)体积=长×宽×高V=abc5、三角形(s:面积a:底h:高)面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6、平行四边形(s:面积a:底h:高)面积=底×高s=ah
利用直观教学,培养学生的观察能力和思维能力。
观察是正确思维的前提,通过观察可使学生由感性认识上升到理性认识。在数学教学中如果能充分运用直观教具进行演示操作,让学生用眼看、用手摸、用心想。这样学生通过观察、分析、综合、比较、分类等思维活动就会掌握知识的本质特征和内在联系。例如:在讲“三角形的内角和等于180度”时如果让学生用量角器去量三个内角的度数则太繁琐也不易得出结果而且也不易验证其结果的准确性。如果用教具演示就容易多了:让一个三角形模型的两内角拼成一个平角(即180度),那么第三个内角必须是平角(180度)减去另两个内角的和了。这样通过演示操作学生就很容易理解和掌握“三角形的内角和等于180度”这个定理了。 不同类型的数学教学教具适用于不同的教学内容。
平方是一种运算,比如,a的平方表示a×a,简写成a²,也可写成a×a(a的一次方乘a的一次方等于a的2次方),例如4×4=16,8×8=64,平方符号为2。立方指数为3的乘方运算即表示三个相同数的乘积;a的立方表示a×a×a,简写成a³,如5×5×5叫做5的立方,记做5³。1、立方也叫三次方。三个相同的数相乘,叫做这个数的立方。如5×5×5叫做5的立方,记做5³。2、量词,用于体积,一般指立方米。3、在图形方面,立方是测量物体体积的,如立方米、立方分米、立方厘米等常用单位,步骤如下:(1)求出立方体的棱长(2)棱长³=体积(注意:如果棱长单位是厘米,体积单位是立方厘米,写作cm³;如果棱长单位是米,体积单位是立方米,写作m³,以此类推。)英文单词:cube4.立方等于它本身的数只有1,0,-1.5.正数的立方是正数,0的立方是0,负数的立方是负数。拓展:负数的奇数次幂都是负数。数学教学教具的更新换代适应了现代数学教育的需求。包头数学教学教具
电子数学教学教具的多媒体功能丰富了教学手段。辽宁数学教学教具配置方案
四则运算的意义和计数方法加法意义、减法意义、乘法意义、除法意义、加法、减法、除法、乘法、验算运算定律与简便方法、四则混合运算加法交换律(a+b=b+a)、加法结合律(a+(b+c)=(a+b)+c)、乘法交换律(a*b=b*a)、乘法结合律(a*(b*c)=(a*b)*c)、乘法分配律(a*(b+c)=a*b+a*c)、连减的性质(a-b-c=a-(b+c))、商不变的性质减法运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c运算分级:加法和减法叫做一级运算;乘法和除法叫做二级运算(简略)复合应用题辽宁数学教学教具配置方案