SpeedDP作为一个服务型AI平台,它能提供从数据标注、模型训练、测试验证到RockChip嵌入式硬件平台模型部署的可视化AI开发功能。平台所需算法并不是固定的,使用者可以根据自身实际应用场景进行AI算法的定制化开发,例如平台经过不断的迭代,目前能够支持YOLOv8系列算法进行图像标注。SpeedDP这个平台使用起来十分简便,在图像标注领域其基本使用方法是:1.首先有一个比较好的预选模型2.用这个预选模型做自动标注3.后期人工审核修正图像标注效率太低怎么办?吉林智慧园区AI智能
经过算法的不断升级验证,Viztra-LE026图像处理板能够以30Hz的帧率跟踪像素为2*2的目标,能够识别**小像素为12*12的目标,整个延迟不高于100ms,识别精度能够大于85%。无人机作业,续航是使用者首要考虑的。Viztra-LE026的设计正是考虑了这项因素,首先重量上就不会给无人机增加过多负担,尺寸方面也无需过多空间,低于4W的功耗对于整个无人机的续航影响也是微乎其微。综合这些特点,可见Viztra-LE026图像处理板和无人机的完美契合,将是各领域打造智能无人机的得力助手。贵州应急救援AI智能服务平台哪里能够定制跟踪船的AI算法?
识别算法的性能提升依靠大量的图像标注,传统模式下,需要人工对同一识别目标的数据集进行一步一步手动拉框,但是这个过程的痛苦只有做过的人才知道。越多素材的数据集对于算法的提升越有帮助,常规情况下,一个20秒时长30帧的视频就多达两三百张画面需要标注,如果视频时长或者视频的帧速率增加,需要标注的帧画面将会更多。小编曾试过标注一个时长为1分30秒帧速率为60的视频,需要标注的画面竟然多达5000多张,当我标注到500张的时候,整个人都已经麻木,并且出现情绪波动,望着剩下的4500多张待标注画面,看着都头皮发麻,怎么都不想继续了。
城市湿地公园是“城市之肺”,是生态建设的重要一环,因此对于湿地公园的日常巡逻必不可少。但是大面积的湿地公园地形复杂交错,许多区域依靠传统的人工巡逻,无法到达。此外,人工巡逻的效率远远不够,无法做到及时响应和精确记录,久而久之,成本就不断累计增加。无人机的落地应用,能够有效减少人工成本的问题。无人机能够凭借小巧的身型,在湿地错综复杂的环境中自由穿梭,确保无死角。利用无人机打造智能巡检系统,通过高清摄像头抵近观察,能够实现湿地全域的高效巡检。其中,智能化的措施在于可以在摄像头的基础上加装图像处理板,通过图像处理板和算法的共同作用,能够让无人机摄像头变成“智慧眼”,这只“智慧眼”能够精细AI识别动物、树木、水中的杂物等等信息,通过大量的数据收集,为管理决策提供依据。算法性能的训练可以自己搞!
小兴安岭的日常巡护,是构筑东北生态安全的必要措施,进入冬季,整个小兴安岭将处于冰雪覆盖,按照传统的巡检模式,危险且费力。整个小兴安岭森林覆盖率达到96%,只靠肉眼的观察,很容易错过死角空白区的潜在危险,因此,无人机上线了。将无人机智能化,在吊舱的基础上加装具备智能图像处理的板卡,再通过定制算法的植入,一个智慧“巡检员”就上线了。面对大森林这样复杂的环境,成都慧视开发的高性能AI图像处理板Viztra-HE030可以胜任,这块板卡采用了瑞芯微旗舰级芯片RK3588,能够输出6.0TOPS的算力,考虑到小兴安岭冬天寒冷的环境,这款板卡能够适应零下40℃的环境,长时间的户外工作不在话下。跟踪快速移动的飞机需要什么样的算法?四川AI智能服务平台
人车识别需要什么样的算法?吉林智慧园区AI智能
长时间一直进行这样的图像标注工作,那无疑是枯燥而乏味的,手酸不说,更多的是精神上的折磨,进而效率大打折扣。但这又是算法提升的必要途径,无法跳过,当项目紧急时,甚至需要多人加班加点赶进度。这样的痛苦现状急需改变!慧视光电的算法工程师为了提高这一的效率,开发了一个深度学习算法开发平台SpeedDP。它的基本逻辑是基于一个手动标注一定量的数据集进行训练,形成一个可用的预选模型(如果已有模型可以直接使用),然后训练一定阶段后,可以评估此模型的能力,如果能够满足使用就可以对相同目标的新数据集(未进行任何标注)进行AI自动化标注。这一过程的省去了大量需要对新数据集的手动拉框工作,同时也在不断反哺此模型算法,帮助提升性能。吉林智慧园区AI智能