长时间一直进行这样的图像标注工作,那无疑是枯燥而乏味的,手酸不说,更多的是精神上的折磨,进而效率大打折扣。但这又是算法提升的必要途径,无法跳过,当项目紧急时,甚至需要多人加班加点赶进度。这样的痛苦现状急需改变!慧视光电的算法工程师为了提高这一的效率,开发了一个深度学习算法开发平台SpeedDP。它的基本逻辑是基于一个手动标注一定量的数据集进行训练,形成一个可用的预选模型(如果已有模型可以直接使用),然后训练一定阶段后,可以评估此模型的能力,如果能够满足使用就可以对相同目标的新数据集(未进行任何标注)进行AI自动化标注。这一过程的省去了大量需要对新数据集的手动拉框工作,同时也在不断反哺此模型算法,帮助提升性能。小型化低功耗的AI目标识别模块。RK3399Pro主板图像识别模块人工智能芯片
新疆地缘辽阔、日照丰富,因此是我国光伏储能发达的区域之一。为了保障光伏基地的正常运作,周期性的巡检必不可少,传统模式下需要人工一步一个脚印走出来,随着现在无人机的广落地应用,这种大面积大范围的巡检也迎来了效率的飞跃。光伏基地每隔一段地方就会有一个铁塔,这些“驻塔式”机巢就是无人机的“巢穴”,无人机从这里起飞,进行巡逻,再回到这里进行充电,循环往复。得益于智慧化的建设,这些巡检无人机有自主巡飞、自动巡检的能力,可完成以机巢为中心5公里范围内的输配电线路和变电设备网格化巡检任务。RK3399Pro主板图像识别模块人工智能芯片应急救援的识别模块怎么购买?

多边形标注能够能够帮助我们标注一些规则复杂的物体,如动物、人、车、建筑物等,与矩形标注框等方法相比,多边形标注更能精确展示被标注物体的形状、大小以及实时形态,通过大量的多边形标注工作,能够更好的帮助我们提高算法模型的准确性和鲁棒性。传统的多边形标注方法中,标注者需要在物体的边缘上依次单击鼠标或使用绘图工具,将点连接起来形成一个封闭的多边形。标注的难度取决于被标注物体的复杂程度,相较于矩形框标注更加费时费力,如果遇到大量待标注目标,则极大地影响工作效率。
RK3588作为瑞芯微国产化旗舰级芯片,用在目标跟踪领域,通常情况下跟踪帧率都在50Hz左右,这已经足够满足大多数应用领域的需求。但在许多特殊领域,如军备、边防,高帧频的视频输出能够在极短的时间内捕捉到更多的画面,实现高速动态场景的连续拍摄。高帧频的目标跟踪则能够获得更多的目标细节,便于做出下一步判断。许多中低端性能的由于算力等因素无法达到这样的需求,但RK3588作为性能怪,6.0TOPS的算力开发潜力无限。成都慧视就针对于这样的需求场景,在硬件的支持下,定制开发出能够支撑100Hz跟踪算法,从而打造出能够稳定实现100Hz目标跟踪的整合方案。62752 如何精确的识别弱小目标?

低空经济成为当下火热的行业之一,各行各业都想利用无人机为自己服务,但是却面临一个问题,专业人才严重不足。有关数据显示,我国无人机经营性企业已超过1.7万家,全国实名登记的无人机已超过200万架。而无人机人才的缺口却多达100万,这就给低空经济的快速发展按下了慢速键。各大高校陆续建设无人机专业,但是四年的教学路怎么也得一步一个脚印,为了应对市场需求,只能从高效率的教学方法着手,让学生更多的结合实际操作进行学习,能够让学生在毕业之后更快的适应工作需求,进而提升稳定就业的概率。Viztra-LE034是采用RV1126开发而成的AI识别模块。河南自主研发图像识别模块解决方案
人车识别的模块定制。RK3399Pro主板图像识别模块人工智能芯片
无人机能够通过高空拍摄快速获取大范围、多角度的地面信息。但是传统的摄像头只能获取视频数据,对于许多需要进行数据分析的行业来说显然不够智能化,从无人机视频数据中快速获取提炼大量有价值的信息,不仅能够提升工作效率,还能够减少不小的成本支出。这就是无人机的AI识别能力。通过识别算法,在无人机工作时就对目标范围进行AI检测识别,从而提炼所需信息。这就需要对无人机进行智能化改造,可以在传统无人机吊舱中植入成都慧视开发的高性能AI图像处理板,如利用RK3588深度开发而成的Viztra-HE030图像处理板,6.0TOPS的算力能够快速处理无人机识别到的复杂画面信息,这样就有了硬件基础,剩下的就需要对自身算法进行不断优化提升。RK3399Pro主板图像识别模块人工智能芯片