GZAFV-01T子系统的原理◆监测原理OLTC在切换的过程中伴随着机械振动,在线监测技术主要利用AFV和驱动电机电流的信号分析法综合对OLTC状态进行诊断。根据AFV信号波谱的异常分析其状态,结合驱动电机电流分析技术,监测能够覆盖档位联接、时间序列、控制继电器、驱动电机、制动器、润滑、线性、电弧、过热和焦炭、电气节点磨损、过渡阻抗等11个项目。较传统停电检修方式,在线监测法针对的故障类型更加***,而且在带电运行时也能够迅速有效反映OLTC运行状态。杭州国洲电力科技有限公司振动声学指纹在线监测功能的多场景适用性。什么是振动监测实验
AFV信号分析法是一种基于振动信号监测的OLTC(有载分接开关)状态诊断技术。其**原理是利用AFV(Acoustic Frequency Vibration)传感器采集变压器箱壁上的振动信号,通过分析信号的时域、频域特征,判断OLTC的运行状态。OLTC在切换过程中,内部机构(如触头、弹簧、传动装置)的运动会产生机械冲击和摩擦振动,这些振动信号通过静触头或变压器油传递至箱壁。由于不同故障(如触头磨损、弹簧老化、电弧放电)会导致振动特征的变化,因此AFV信号分析法能够有效识别OLTC的早期故障,为预防性维护提供依据。国产振动监测报告申请杭州国洲电力科技有限公司振动声学指纹在线监测技术的行业应用背景。
AFV 信号分析法为 OLTC 的状态评估提供了一种科学、有效的方法。OLTC 在长期运行过程中,内部触头和其他部件会逐渐出现磨损、老化等问题,这些问题会导致 OLTC 的性能下降,甚至引发故障。当触头磨损严重时,其接触电阻增大,在分 / 合过程中会产生更多的热量和电弧,进而影响 OLTC 的振动特性。AFV 传感器通过监测 OLTC 的振动信号,能够及时发现这些变化。通过对信号的分析,我们可以评估 OLTC 的健康状况,预测其剩余使用寿命,为设备的预防性维护提供重要依据,提高电力系统的运行经济性和可靠性。
运用 AFV 信号分析法判断 OLTC 的状态,需要关注 OLTC 振动信号的多维度特征。OLTC 切换时产生的振动信号,其频率、幅值、相位等特征都与设备的运行状态密切相关。例如,当 OLTC 出现触头磨损故障时,振动信号的频率分布会发生变化,高频成分会增多;幅值也会随着磨损程度的加深而增大。同时,信号的相位可能会发生偏移,这反映了内部机械结构的相对位置变化。通过对这些多维度特征的综合分析,我们可以更加准确地判断 OLTC 的故障类型和状态,为设备的维修和保养提供更***的信息,确保电力系统的可靠运行。杭州国洲电力科技有限公司的企业发展历程与技术创新成果。
OLTC是在励磁状态下,通过改变绕组分接位置实现电网的有载调压,起到稳定负载电压、调节无功潮流、增加电网灵活度等重要作用。它是调压变压器中***的可动部件、关键部件之一。国际大电网委员会(GIGRE)等国内外统计结果表明(下图1所示),OLTC故障占变压器总体故障的30%以上,各类故障影响变压器及整个电网的安全稳定运行,严重时更会导致大面积停电、电气火灾等事故。OLTC的故障模式有多种,具体包括传动轴断裂、选择开关触头接触不良、操作机构失灵造成的拒动或滑档现象、限位开关失灵、切换开关拒切、中止或动作滞后、内部紧固件松动和脱落、以及内部渗漏等。根据国家电网设备部发布的《设备管理重点工作任务》,2020年度需完成382台换流变OLTC隐患整改,加快消除故障隐患。因此,实施OLTC在线监测与故障诊断不仅对确保变压器及整个电网安全稳定运行具有重要的现实意义,也是今后的发展方向。杭州国洲电力科技有限公司振动声学指纹在线监测技术的国际合作案例。GIS振动声纹监测安装
GZAFV-01型声纹振动监测系统(变压器、电抗器)的高灵敏度检测和早期隐患捕捉。什么是振动监测实验
变压器运行时,电流通过绕组时产生的电动力引起绕组振动,硅钢片的磁致伸缩及硅钢片接缝处与叠片之间的漏磁导致铁芯振动。由于绕组导体所受电动力正比于负载电流的平方,绕组的声纹振动信号的基频为100Hz。由于变压器中磁感应强度正比于加载电压的平方,铁芯的声纹振动信号的基频也为100Hz。另外,考虑到铁芯振动的非线性特性,声纹振动信号还会包含频率为100Hz整数倍的高次谐波。当变压器的绕组变形或铁芯故障后,声纹振动信号频谱分布将发生改变,产生谐波分量。因此,信号分量可以作为区别绕组故障与铁芯故障的重要依据,采用声纹振动监测法可实现绕组及铁芯在线运行状态下的健康态势评价与故障类型诊断。什么是振动监测实验